Mechanisms of Chlamydophila pneumoniae-mediated GM-CSF release in human bronchial epithelial cells.
نویسندگان
چکیده
Chlamydophila pneumoniae is an important respiratory pathogen. In this study we characterized C. pneumoniae strain TW183-mediated activation of human small airway epithelial cells (SAEC) and the bronchial epithelial cell line BEAS-2B and demonstrated time-dependent secretion of granulocyte macrophage colony-stimulating factor (GM-CSF) upon stimulation. TW183 activated p38 mitogen-activated protein kinase (MAPK) in epithelial cells. Kinase inhibition by SB202190 blocked Chlamydia-mediated GM-CSF release on mRNA and protein levels. In addition, the chemical inhibitor as well as dominant-negative mutants of p38 MAPK isoforms p38alpha, beta2, and gamma inhibited C. pneumoniae-related NF-kappaB activation. In contrast, blocking of MAPK ERK, c-Jun kinase/JNK, or PI-3 Kinase showed no effect on Chlamydia-related epithelial cell GM-CSF release. Ultraviolet-inactivated pathogens as compared with viable bacteria induced a smaller GM-CSF release, suggesting that viable Chlamydiae were only partly required for a full effect. Presence of an antichlamydial outer membrane protein-A (OmpA) antibody reduced and addition of recombinant heat-shock protein 60 from C. pneumoniae (cHsp60, GroEL-1)-enhanced GM-CSF release, suggesting a role of these proteins in epithelial cell activation. Our data demonstrate that C. pneumoniae triggers an early proinflammatory signaling cascade involving p38 MAPK-dependent NF-kappaB activation, resulting in subsequent GM-CSF release. C. pneumoniae-induced epithelial cytokine liberation may contribute significantly to inflammatory airway diseases like chronic obstructive pulmonary disease (COPD) or bronchial asthma.
منابع مشابه
Glucocorticoid regulation of GM-CSF: evidence for transcriptional mechanisms in airway epithelial cells.
Inflammation plays a central role in the pathogenesis of asthma. Glucocorticoids are first-line anti-inflammatory therapy in the treatment of asthma and are effective inhibitors of inflammatory cytokines. Clinical data demonstrate that granulocyte-macrophage colony-stimulating factor (GM-CSF) production by airway epithelial cells may be an important target of inhaled glucocorticoid therapy. We ...
متن کاملRegulation of expression of granulocyte-macrophage colony-stimulating factor in human bronchial epithelial cells: roles of protein kinase C and mitogen-activated protein kinases.
GM-CSF has a major role in the immune and inflammatory milieu of the airway. Airway epithelial cells (AEC) are among the first targets of environmental stimuli and local cytokines, in response to which they can produce GM-CSF. The regulation of GM-CSF is only minimally understood in AEC. We hypothesized that GM-CSF expression in AEC would result from activation of protein kinase C (PKC) and sub...
متن کاملAnti-inflammatory activity of beta2-agonists in primary lung epithelial cells is independent of glucocorticoid receptor.
In patients with asthma and chronic obstructive pulmonary disease, the addition of long-acting beta(2)-agonists (LABA) to glucocorticosteroids (GCS) results in better control than increasing the dose of GCS alone. In smooth muscle cells and fibroblasts, one apparent underlying mechanism involves the ability of LABAs to activate the glucocorticoid receptor (GR). The present study investigates th...
متن کاملMechanisms of GM-CSF increase by diesel exhaust particles in human airway epithelial cells.
We have previously shown that exposure to diesel exhaust particles (DEPs) stimulates human airway epithelial cells to secrete the inflammatory cytokines interleukin-8, interleukin-1beta, and granulocyte-macrophage colony-stimulating factor (GM-CSF) involved in allergic diseases. In the present paper, we studied the mechanisms underlying the increase in GM-CSF release elicited by DEPs using the ...
متن کاملALUNG January 22/1
Boland, Sonja, Véronique Bonvallot, Thierry Fournier, Armelle Baeza-Squiban, Michel Aubier, and Francelyne Marano. Mechanisms of GM-CSF increase by diesel exhaust particles in human airway epithelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 278: L25–L32, 2000.—We have previously shown that exposure to diesel exhaust particles (DEPs) stimulates human airway epithelial cells to secrete the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of respiratory cell and molecular biology
دوره 34 3 شماره
صفحات -
تاریخ انتشار 2006